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STUDY PROTOCOL 

IntroductIon
Parkinson’s disease (PD) affects 1-2% of people aged 65 
and over, representing over 1 million Americans (Dorsey 
et al., 2007). Although traditionally characterized by mo-
tor symptoms, over the course of PD cognitive symptoms 
have a greater impact on patient suffering and caregiver 
burden (Docherty and Burn, 2010). Three-fourths of patients 

surviving 20 years or longer develop dementia making it 
the leading cause of nursing home placement (Hely et al., 
2008). Despite the high prevalence of cognitive dysfunction 
in PD, its pathophysiology is poorly understood and current 
treatments have minimal effects on symptoms or progres-
sion (Emre et al., 2004).  Moreover, standard medical and 
surgical PD treatments have no effect on cognition and may 
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in fact worsen cognition (Kluger et al., 2011). Better treat-
ment strategies for PD-related cognitive dysfunction based 
on an improved knowledge of neurobiological mechanisms 
are clearly needed. 

Functional connections between cortical regions are 
important for normal cognition and memory (Friederici, 
2011; He et al., 2012) and alterations in functional corti-
cal connectivity may contribute to cognitive dysfunction 
in PD (Bosboom et al., 2009). In the past decade, modern 
network theory has emerged as a powerful tool to describe 
the organization of functional brain networks using the 
mathematics of graph theory (Stam and van Straaten, 2012). 
Two fundamental measures are path length, defined as 
the average distance between any two nodes in a network 
and a measure of global efficiency and integration; and 
the clustering coefficient, defined as the average number 
of mutually connected nodes surrounding each node and 
a measure of local efficiency and modularity. An optimal 
balance between global and local efficiency can be achieved 
through clustered modules connected through integrating 
links, a design termed small-world architecture (Wylie et 
al., 2012). It is well-established that healthy brain networks 
demonstrate small-world architecture (Rubinov and Sporns, 
2010). Importantly, loss of small world features is associ-
ated with cognitive dysfunction in multiple sclerosis and 
Alzheimer’s disease (AD) (Sanz-Arigita et al., 2010; de 
Haan et al., 2012; Hardmeier et al., 2012). Known features 
of PD neurophysiology relevant to network connectivity 
include reduced cortical inhibition (Lefaucheur, 2005), 
which may lead to disrupted modularity, and pathological 
subcortical oscillations (Pogosyan et al., 2010), which may 
drive increased randomness. Our pilot data and other stud-
ies (Wu et al., 2009) suggest that network architecture is 
abnormal in PD, but its relationship to cognitive dysfunction 
has not been examined.

Magnetoencephalography (MEG) measures cortical 
activity on a millisecond time scale and can provide highly 
informative data for graph theory analyses (de Haan et al., 
2012; Hardmeier et al., 2012). Advantages of MEG versus 
fMRI include high temporal resolution, ability to separate 
oscillatory spectra and direct measurement of neuronal 
activity (Robinson et al., 2012). MEG has been used to 
examine the mechanisms of cognitive therapeutic agents 
in PD such as acetylcholinesterase inhibitors (de Haan et 
al., 2008).

Repetitive transcranial magnetic stimulation (rTMS) 
modulates brain activity using repeated pulses from a mag-
netic coil over the scalp. rTMS may induce effects through 
changes in cortical excitability (Daskalakis et al., 2006), 
neuroplasticity (Chen and Udupa, 2009), gene expression 
(Aydin-Abidin et al., 2008), neurotrophic factors (Wang et 

al., 2011), and neurotransmitters including dopamine (Cho 
and Strafella, 2009). Recent studies further show that rTMS 
can modulate focal oscillatory activity (Barr et al., 2009) and 
network connectivity (Fox et al., 2012; Shafi et al., 2014). 
Our preliminary data suggest that rTMS similarly affects 
network connectivity in PD. The therapeutic potential of 
rTMS is established in certain neuropsychiatric illnesses, 
including Food and Drug Administration (FDA) approval 
for depression (Connolly et al., 2012). rTMS can also im-
prove cognitive function in healthy older adults (Kim et al., 
2012), Alzheimer’s disease (AD) (Rabey et al., 2013), and 
PD (Boggio et al., 2005; Srovnalova et al., 2011). Limita-
tions of prior PD studies include not specifically enrolling 
subjects with cognitive impairment, not controlling for 
depression, not assessing the durability of benefits and not 
tying rTMS effects to mechanisms. In this study we address 
these limitations in a clinical and mechanistic trial of rTMS 
in PD patients with mild cognitive impairment (MCI).

Objectives
rTMS can improve cognition in PD without dementia 
(Srovnalova et al., 2011), PD with depression (Boggio et 
al., 2005), older adults (Sole-Padulles et al., 2006) and in 
AD (Cotelli et al., 2008) but has not been tested in PD-
MCI. Given the need for improved cognitive treatments 
and possible differences in rTMS effects on PD-MCI 
pathophysiology, it is important to specifically test rTMS in 
this population. Prior studies as well as our own pilot data 
suggest that rTMS modulates cortical connectivity (Fox et 
al., 2012; Shafi et al., 2014); thus rTMS provides not only 
a potentially effective intervention but an important causal 
test of the theoretical link between cortical connectivity 
and cognitive dysfunction in PD. Our clinical objective for 
this experiment is to determine whether rTMS improves 
cognitive outcomes in PD-MCI. Our mechanistic objec-
tive is to determine whether rTMS normalizes patterns 
of cortical connectivity using MEG. We hypothesize that 
high-frequency bifrontal rTMS will partially normalize 
patterns of cortical connectivity linked to frontal nodes and 
will improve cognitive measures. 

Methods/desIgn
Study design
A randomized controlled clinical trial with two parallel 
arms will be designed. Fifty-five PD-MCI subjects will be 
randomized to a 10-day course of real or sham bifrontal 
high frequency rTMS. Subjects will be recorded at rest 
during the MEG scan. We will measure cognitive and MEG 
outcomes pre-treatment and on the day of the last treatment 
and repeat cognitive measures 28 days post rTMS to assess 
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order Task Force 2012 Criteria and a CDR less than 2

Exclusion criteria
• Features suggestive of other neurological disorders
• Deep brain stimulation
• Evidence for active depression or Hospital Anxiety De-

pression Scale (Zigmond and Snaith, 1983) score > 11
• Motor symptoms expected to interfere with scanning
• Contraindications to TMS:

- History of seizures or status epilepticus
- Unstable coronary artery disease
- Hydrocephalus
- Implantable electrodes, cerebral spinal fluid shunts, 

skull plates or other intracranial metal
- Medical devices including pacemakers or other 

implantable stimulators or pumps
- Subjects taking medications known to lower seizure 

threshold
- Pregnancy

Withdrawal criteria
• Subjects are allowed to withdraw at any time, for any 

reason, and will not lose the any benefit or right as a 
result of withdrawal.

the durability of cognitive changes. The flow chart of this 
trial protocol is shown in Figure 1.

Study participants
We will recruit 55 participants over the age of 40 from the 
Movement Disorders Center at University of Colorado 
Denver. PD subjects diagnosed with probable PD using 
UK Brain Bank Criteria (Hughes et al., 1992) and with 
MCI using the Movement Disorder Task Force 2012 cri-
teria (Litvan et al., 2012) as well as a Clinical Dementia 
Rating scale score (CDR) less than 2 (Morris, 1993) will 
be enrolled in the study. All study visits will be performed 
in subjects’ best dopaminergic “On” state. PD MCI and 
mild dementia subjects will be tested on anticholinester-
ase therapy, if already taking these medications given the 
potential difficulty of finding drug naïve subjects; long 
half-life of these medications; and desire to find measures 
robust to medication effects as seen in prior MEG studies 
(de Haan et al., 2008).

Inclusion criteria
• Diagnosis of probable PD according to the UK Brain 

Bank Criteria 
• Age > 40 years
• MCI or mild dementia according to the Movement Dis-

Figure 1: Flow chart of the trial.
PD: Parkinson's disease; MCI: mild cognitive impairment; rTMS: repetitive transcranial magnetic stimulation; SD: standard deviation；MDRS: Mattis 
Dementia Rating Scale; MEG: magnetoencephalography; MRI: magnetic resonance imaging.
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lowest TMS intensity needed to produce a motor-evoked 
potential of at least 50 μV in 50% of the trials delivered. 

Sham stimulation will be delivered using a sham coil fit-
ted with electrodes to mimic both the auditory and somatic 
sensation of real TMS (Triggs et al., 2010).

Outcome measures
Outcome measures will be assessed at baseline and post-
intervention. Cognitive outcomes will also be assessed 28 
days post-intervention (Table 1). 

Primary outcome meaure 
Total score of the Mattis Dementia Rating Scale (MDRS) 
(Mattis, 2002), which measures multiple cognitive domains 
and is validated in PD (Llebaria et al., 2008). 

Secondary outcome measures
- Executive function (Trail B, Verbal Fluency, Stroop) 

(Delis et al., 2001)
- Memory (California Verbal Learning Test – version II) 

(Delis, 2000)
- Language (Boston Naming Test) (Kaplan et al., 1983)
- Attention (Brief Test of Attention) (Schretlen, 1997) 
- Visuospatial (Judgement of Line Orientation) (Benton 

et al., 1978) 
- Unified Parkinson’s Disease Rating motor section (Fahn 

et al., 1987) used as a covariate in models for disease 
severity

Other outcome measures 
An important secondary question is whether connectivity 
in specific networks is associated with domain specific 
deficits. Our primary MEG outcome measure will be net-
work small-worldness, calculated as the ratio of the mean 
clustering coefficient to the mean path length normalized 

• Subjects may be withdrawn if the study doctor thinks that 
being in the study may cause the subject harm or for any 
other reasons. 

Recruitment
Subjects will be recruited from the University of Colorado 
Hospital (UCH) Movement Disorders and Neurobehavior 
clinics and Denver Health Medical Center Movement 
Disorder Clinics which see over 3,000 patients annually, 
40% of whom have PD and 10% of whom have PD-MCI 
(approximately 300 patients per year).

Randomization
After enrollment and screening assessment, PD-MCI 
subjects will undergo neuropsychological testing, magne-
toencephalography (MEG) recordings, and MRI. PD-MCI 
subjects will then be randomized in a 1:1 ratio into real or 
sham TMS groups using MAPLE 9.0 software (Waterloo, 
Canada). Subjects will also be counterbalanced by side of 
initial stimulation (left vs. right hemisphere). 

Interventions
TMS will be administered using a 70-mm diameter air-
cooled figure-of-8 Stimulator to the right and left dorsolat-
eral prefrontal cortex (DLPFC; Brodman area 46). TMS will 
consist of 10 sessions (over two weeks) of 20 Hz repetitive 
TMS given at 90% resting motor threshold (RMT) for 25 
trains of 30 pulses per train, inter-train interval of 30 sec-
onds for a total of 750 pulses per hemisphere, which is well 
within the most recent international TMS safety guidelines 
(Rossi et al., 2009). 

This dose and duration of rTMS is based on physiological 
studies of healthy adults (Barr et al., 2009) and treatment 
studies of cognition in PD (Srovnalova et al., 2011) and 
AD (Cotelli et al., 2008). RMT will be determining as the 

Table 1: Schedule of events

2 weeks

Baseline* rTMS sessions 1-9 rTMS  session 10 28 days post rTMS

Informed consent X
MRI X
Real/sham rTMS X X
Neuropsychological assessments:
- Primary outcome: Matthis Dementia Rating Scale
- Secondary outcomes: Trail B, Verbal Fluency, 
Stroop, California Verbal Learning Test, Boston 
Naming Test, Brief Test of Attention, Judgement of 
Line Orientation

X X X

Magnetoencephalography (MEG):
Resting state for MEG outcomes

X

*Baseline procedures to be completed within 1 week or rTMS session 1. 
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to a randomly connected network (Humphries and Gurney, 
2008). Secondary MEG outcome measures will include 
global efficiency (a measure of global integration related 
to path length), nodal efficiency (a measure of modularity) 
(Wylie et al., 2012), and degree distribution (a measure of 
network resilience) (Barabasi and Albert, 1999).

Discomforts or risks
There are minimal risks involved in the proposed research. 
There are no known risks from MEG recordings. In appro-
priately screened subjects, the primary risk of MRI is claus-
trophobia and anxiety which is remediable by removal from 
the scanner. Cognitive testing as proposed in this study may 
induce boredom or restlessness. Any new neuropsychiatric 
diagnoses detected during screening (e.g., depression) will 
be referred for appropriate treatment, including emergent 
treatment if indicated. TMS as proposed in this study has 
a minimal risk (less than 1 in 1,000) of inducing seizures 
in appropriately screened subjects or other adverse events 
(Rossi et al., 2009).  Notably, there have no cases of epilepsy 
(recurrent seizures) or status epilepticus (prolonged seizure 
considered a medical emergency) with TMS. The risks of 
TMS in PD are similar to that of the general population 
(Vonloh et al., 2013). Transient motor worsening has been 
reported with supplementary motor area TMS in PD, but 
not with the frontal targets we have proposed. There have 
been reports of hearing loss with repeated TMS pulses and 
thus all subjects will be required to wear ear plugs, similar 
to MRI. There is a slight risk of headache and neck pain, 
which is typically self-resolving and/or treatable with over 
the counter analgesics.

All subjects will be required to wear hearing protection 
and will be supervised by study personnel during all aspects 
of this study. A neurologist will be available either in person 
or on-call within the building in the event of a seizure or 
other adverse study events. Study personnel involved in hu-
man subject interactions will be trained not only in human 
subjects protection but will be also basic life support (BLS) 
certified and trained in seizure safety and what to do in the 
event of other medical emergencies. All adverse events 
will be reported to the IRB within 5 days and seizures or 
other significant adverse events associated with TMS will 
additionally be reported to the FDA.

Data collection and processing
MRI data collection
Individual anatomical MRI’s will be obtained to localize 
DLPFC using Brainsight software (Brainsight, Rogue Re-
search Inc., Montreal, Canada) for frameless stereotactic 
navigation (Paus, 1999). MRI scans will be acquired using a 
G.E. 3.0 T Signa, whole body magnet with an Excite upgrade 
and 8-channel  head  coil  using  a  3-D,  extended  dynamic  

range,  inversion recovery SPGR ASSET parallel imaging se-
quence with excellent gray/white contrast. The T1-weighted 
series will consist of 1 mm thick coronal images to be aligned 
with MEG using SPM8 software (Rojas et al., 2008).

MEG data collection
Magnetic field data will be recorded using a whole head 
neuromagnetometer (4D Neuroimaging) with an array 
of 248 sensors at rest with eyes open for 2 minutes and 
closed for 2 minutes at a 678 Hz sampling rate. Data will 
be processed offline using a 0.1-100 Hz band pass filter. 
Data will be manually examined and five 6-second artifact 
free epochs for both eye-open and closed conditions will be 
selected for further analyses. Artifact correction if needed 
will be performed using independent components analysis 
(Jung et al., 2000). Sensors will be realigned to a common 
sensor array to allow group level analysis in a shared brain 
space (Ross et al., 2011)

MEG data processing
Individual anatomical MRI images will be acquired and co-
registered with MEG source results for location accuracy us-
ing BESA MRI software (BESA MRI 2.0; MEGIS Software 
GmbH, Germany). Following data acquisition, there are four 
major steps for graph theory analysis (de Haan et al., 2012). 
First, data will be transformed into the frequency domain us-
ing Morlet wavelets and parceled into six standard frequency 
bands: delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), 
low beta (12-20 Hz), high beta (20-30 Hz) and gamma 
(30-60 Hz) (Teale et al., 2008). Further analyses will be 
performed separately for each band. Second, the strength 
of functional connectivity must be calculated among all 
sensors. Granger causality will be used for this step, provid-
ing a directional weighted measure of connectivity suitable 
for graph theory (Pollonini et al., 2010; Ding et al., 2011). 
Third, functional connections between nodes will be used 
to create a network graph. This is matrix representing the 
directed weighted connection strengths between all sensors 
for each frequency band. Advantages of creating a weighted 
network graph include ensuring full connectedness and 
avoiding potentially arbitrary thresholds required for bi-
nary networks (Rubinov and Sporns, 2010). Finally, graph 
analyses can be performed on the network graph using the 
Matlab-based Brain Connectivity Toolbox (Rubinov and 
Sporns, 2010) and custom Matlab code.

Sample size calculation and statistical analysis
We will address our primary clinical research question by 
determining whether there is a significant group difference 
between the real and sham treated PD-MCI patients on the 
MDRS change following rTMS using repeated measures 
ANOVA. We will address our primary physiologic research 
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question by determining whether there is a significant 
difference between the real and sham treated PD-MCI 
patients on change in MEG measures of small-worldness 
using repeated measures ANOVA. Secondary analyses will 
include determining group differences in change on mea-
sures of quality of life, domain specific neuropsychological 
results and durability at the 28-day post-TMS. If cognition 
is improved we will use regression modeling to determine 
if these improvements were associated in changes in small-
worldness or other MEG features. 

With a total sample size of 50 (25 per group allowing for 
5 drop-outs from original 55) we will be able to determine 
a between group difference of 10 points on the MDRS (as-
suming a standard deviation of 13 as per prior trials and an 
effect size 0.77) (Dujardin et al., 2006) with 80% power and 
0.05 significance. This sample size is comparable to prior 
Parkinson’s disease dementia studies. For example, a study 
of rivastigmine in Parkinson’s disease dementia detected 
significant change on the MDRS with only 28 subjects 
(Dujardin et al., 2006).

Ethical considerations
The study protocol has been approved by the Colorado Mul-
tiple Institutional Review Board (approval No. 13-2474) and 
will be performed in accordance with the Declaration of 
Helsinki. PD-MCI patients may be considered a vulnerable 
population due to cognitive dysfunction but are necessary 
to answering our research questions. We are cognizant of 
this issue and will carefully assess potential participant’s 
understanding of the study, particularly of study activities 
and risks. If there are any concerns on the part of the in-
vestigator or potential participant, we will require that their 
guardian participate in the consenting process and sign an 
informed consent. We will also require that PD-MCI sub-
jects give consent, or at minimum assent if fully informed 
consent is not possible. Our protocol and consent forms will 
be approved by our local institutional review board (IRB) 
before approaching any potential subjects.

dIscussIon
PD is the second most common neurodegenerative dis-
ease, affecting over one million Americans and dementia 
is the most common cause of nursing home placement in 
this population (Dorsey et al., 2007; Hely et al., 2008).  
Our understanding of the neurobiological mechanisms of 
cognitive dysfunction in PD is limited and we do not have 
efficacious treatments. This research aims to evaluate the 
potential for TMS to induce durable changes in PD cognitive 
function and connectivity. Given the burden of dementia 
in this population, we feel that the minimal risks involved 
are justified both to individual PD and PD-MCI subjects, 

the larger population of PD and PD-MCI patients, and to 
society as a whole. Recent TMS studies using published 
safety guidelines suggest that the risks of TMS may be even 
lower than previously described. Even using conservative 
estimates and anticipating some discomfort from prolonged 
sitting and cognitive testing, we argue that this research is 
imperative to advance this field and ultimately to provide 
relief to these patients and their caregivers. This research 
with address this significant public health issue in three ma-
jor ways: 1) Identify abnormalities in cortical connectivity 
associated with cognitive dysfunction in PD; 2) Develop 
a MEG biomarker for cognitive dysfunction in PD; and 3) 
Evaluate the potential for TMS to induce durable changes 
in PD cognitive function and connectivity.

Prior TMS trials are often questioned regarding the ad-
equacy of patient blinding with certain sham procedures. 
Our sham involves both auditory and tactile stimulation, 
and in fact resulted in a similar improvement in depression 
as real TMS in our recent trial (Triggs et al., 2010). Subject 
retention, particularly with PD-MCI, may be difficult with 
2 weeks of daily treatment. We will use similar procedures 
to our PD apathy rTMS trial where we maintained 100% 
retention. Finally, our sample size is relatively small to 
detect clinically significant changes. This is in part due to 
budgetary imitations and one goal of this trial is to serve 
to develop a more definitive, larger trial with longer-term 
follow-up. Changes in sensor location over repeated record-
ings may result in false attribution of brain activity changes. 
To address this issue, sensors will be realigned to a com-
mon sensor array to allow repeated group level analysis in 
a shared brain space (Ross et al., 2011). 

Trial status
At the time of the submission of this manuscript, approxi-
mately 90% of the patients had been recruited. 
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