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Abstract

Cognitive impairment is increasingly recognized as a characteristic feature of

Parkinson’s disease (PD), yet relatively little is known about its underlying

neurobiology. Previous investigations suggest that dementia in PD is associ-

ated with subcortical atrophy, but similar studies in PD with mild cognitive

impairment have been mixed. Variability in cognitive phenotypes and diversity

of PD symptoms suggest that a common neuropathological origin results in a

multitude of impacts within the brain. These direct and indirect impacts of dis-

ease pathology can be investigated using network analysis. Functional connec-

tivity, for instance, may be more sensitive than atrophy to decline in specific

cognitive domains in the PD population. Fifty-eight participants with PD

underwent a neuropsychological test battery and scanning with structural and

resting state functional MRI in a comprehensive whole-brain association anal-

ysis. To investigate atrophy as a potential marker of impairment, structural

gray matter atrophy was associated with cognitive scores in each cognitive

domain using voxel-based morphometry. To investigate connectivity, large-

scale networks were correlated with voxel time series and associated with cog-

nitive scores using distance covariance. Structural atrophy was not associated

with any cognitive domain, with the exception of visuospatial measures in
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primary sensory and motor cortices. In contrast, functional connectivity was

associated with attention, executive function, language, learning and memory,

visuospatial, and global cognition in the bilateral hippocampus, left putamen,

olfactory cortex, and bilateral anterior temporal poles. These preliminary

results suggest that cognitive domain-specific networks in PD are distinct from

each other and could provide a network signature for different cognitive

phenotypes.
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1 | INTRODUCTION

Parkinson’s disease (PD) is a progressive neurodegenera-
tive disorder characterized by the cardinal motor symp-
toms of bradykinesia, rigidity, and tremor (Christopher &
Strafella, 2013; Kehagia et al., 2010). The pathological
hallmark of PD is progressive neuronal cell loss and the
presence of aggregated alpha-synuclein proteins in sub-
cortical and cortical structures, termed Lewy bodies and
Lewy neurites. This pathology is proposed to initially
occur in the olfactory bulb and dorsal motor nucleus of
the vagus nerve, subsequently spreading to the substantia
nigra when motor symptoms begin to appear (Braak
et al., 2003; Goedert et al., 2013). As the disease
progresses, synuclein inclusions further spread to medial
temporal limbic structures, such as the hippocampus
and amygdala, and to the neocortex in the final stages of
the disease (Stefanis, 2012). In addition to synuclein
pathology, PD is also associated with Alzheimer-type
amyloid plaques and neurofibrillary tangles, including in
the hippocampus (Emre, 2003b; Kalaitzakis &
Pearce, 2009).

Similar to Alzheimer’s disease, PD is associated with
cognitive decline and dementia. At diagnosis of PD, 15–
20% of patients have mild cognitive impairment (PD-
MCI; Aarsland, 2016). Subsequently, in the next 3 to
5 years, 20–57% of patients will experience cognitive defi-
cits (Hanagasi et al., 2017; Kehagia et al., 2010). PD-MCI
is predictive of PD dementia (PDD), which develops in
up to 80% of patients with PD-MCI (Dirnberger &
Jahanshahi, 2013; Hanagasi et al., 2017). As advances in
treatment for PD prolong the lives of people with the dis-
ease, the incidence and prevalence of PDD may increase.
Given the adverse effects on quality of life and disease
burden associated with cognitive impairment, there is
burgeoning interest in these non-motor symptoms of PD
(Kalaitzakis & Pearce, 2009). The Movement Disorders
Society Task force has developed specific clinical diagnos-
tic criteria for PD-MCI (Litvan et al., 2012) and for PDD

(Emre et al., 2007). While such criteria provide a thor-
ough distinction between cognitive states, they require
comprehensive neuropsychological testing sessions
which are initiated by the referring neurologist when
concerns about cognitive decline are expressed. Identify-
ing risk to cognitive decline before its manifestation may
be therefore a new strategy. Early identification might be
especially important for potential early intervention strat-
egies targeting modifiable cognitive risk factors, such as
vascular risk (Raz & Rodrigue, 2006).

In recent years, there has been an increasing focus on
finding a biomarker to quantify the risk of cognitive
impairment in PD, as well as to develop effective phar-
macological interventions (Delgado-Alvarado et al., 2016;
Hohenfeld et al., 2018). Neuroimaging biomarkers, in
particular, may be promising due to their non-invasive
nature and ability to detect the specific neuronal pathol-
ogy contributing to dementia, in terms of the contribu-
tions of individual neuroanatomical regions. Several
studies have found hippocampal atrophy to be associated
with PDD (reviewed in Delgado-Alvarado et al., 2016).
However, this finding is not universal and may not be as
prominent in the early stages of cognitive decline
(Christopher & Strafella, 2013). In addition, while impair-
ments in executive function, attention, and visuospatial
abilities rather than amnestic deficits are commonly
found during early stages of cognitive decline in PD,
some subgroups of patients may instead exhibit greater
difficulties with memory and language (Emre, 2003b).
This heterogeneity in cognitive profiles may benefit
from multimodal identification, including self-reports,
clinical evaluation, neuropsychological testing, and
possibly neuroimaging and neurophysiological assess-
ments, in order to better characterize cognitive
phenotypes.

A rising idea suggests that connectivity biomarkers of
early disease pathology may be more sensitive than gray
matter atrophy (Amboni et al., 2015; Seibert et al., 2012).
Connectivity measured using resting state functional
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magnetic resonance imaging (rs-fMRI) is particularly
attractive for clinical populations, because it does not
require cognitively demanding tasks or active effort and
can be applied to patients in a wide variety of conscious
and cognitive states. However, previous rs-fMRI studies
of cognition in PD have yielded mixed results (Gao &
Wu, 2016; Hohenfeld et al., 2018). These studies have
been limited in scope, analyzing a small number of
regions or networks, selected in advance based on widely
varying criteria, or lacking adequate methodology to deal
with heterogeneity. Thus, by focusing on a select few con-
nections, these studies potentially miss substantial influ-
ences on cognition from the vast number of connections
within the brain. This narrowly focused and selective
approach to connectivity shares the same limitations as
early regionally focused neuroimaging studies, rather
than the broader voxel-based whole-brain investigations
that are now standard in task-based fMRI. To date, voxel-
level, whole-brain data-driven investigations of connec-
tivity and cognition in PD remain rare (Gao & Wu, 2016)
but could potentially take advantage of the increased sen-
sitivity of rs-fMRI to early stage pathology, as well as
yield results more comparable to other imaging modali-
ties and coordinate-based meta-analysis.

The current investigation applies a novel, whole-
brain, data-driven analysis to examine the neural corre-
lates of cognitive domains in the context of PD. Rather
than focusing on group differences between broad sub-
types such as PD-MCI or PDD, subject’s scores for each
cognitive domain were analyzed on continuum. The ana-
lytic approach measures voxel-level connectivity using
independent components analysis (ICA) in PD subjects
with a wide range of cognitive abilities. It analyzes the
relationship between connectivity and cognition using
distance covariance (dCov; Székely et al., 2007). Distance
covariance is a recently developed statistical method,
with power and flexibility equivalent to machine learning
methods (Sejdinovic et al., 2013). Using the combination
of ICA and dCov, we hypothesize that cognitive perfor-
mance in PD will be associated with connectivity involv-
ing the basal ganglia and hippocampus, according to the
proposed broader primary and progressive pathology
associated with the disease (Braak et al., 2003; Goedert
et al., 2013). Specifically, connectivity to these subcortical
regions and relevant large-scale networks (e.g., the Dorsal
Attention Network for neurocognitive tests of attention)
will influence measures of executive function, attention
and visuospatial processing, the cognitive domains most
commonly affected in PD. Voxel-level results from this
novel analysis of functional connectivity were then com-
pared with gray matter atrophy, as measured with voxel-
based morphometry (VBM). Gray matter atrophy was
measured using VBM. Although surfaced-based cortical

thickness (Fischl, 2012) is arguably a more sensitive mea-
sure of atrophy for the cortical regions, it does not exam-
ine subcortical regions such as the hippocampus, nor
does it allow for direct comparison with voxel-based
dCov results. We expect that, in contrast to the more sen-
sitive functional connectivity measure, gray matter atro-
phy in the PD brain will not be associated with any
cognitive measure.

2 | MATERIALS AND METHODS

2.1 | Study population

Sixty-eight patients with PD were recruited through the
University of Colorado Hospital’s Movement Disorder,
Memory Disorder, and Neuropsychology Clinics. Diagno-
sis of PD was defined using UK Brain Bank Criteria
(Hughes et al., 1992). All subjects were age 40 or older
and on stable medications for at least 30 days. All sub-
jects were tested in their usual medication state
(i.e., “ON”). All subjects gave informed consent to partici-
pate. The study was approved by the Colorado Multiple
Institution Review Board and is in accordance with the
ethical standards of the Declaration of Helsinki.

Exclusion criteria included features suggestive of
other causes of parkinsonism or Parkinson-plus syn-
dromes; features suggestive of other causes of dementia,
including moderate to severe cerebrovascular disease by
history or imaging; history of major head trauma; history
of deep brain stimulation, ablation surgery, or other brain
surgery; evidence for moderate depression based on the
Hospital Anxiety Depression Scale (score > 11;
Zigmond & Snaith, 1983); as well as MRI exclusion fac-
tors (claustrophobia, weight >300 lb, metal in the body).
Ten subjects were subsequently excluded for excessive
movement during fMRI scanning (>2 mm or 2� in any
direction), because fMRI motion correction techniques
are of limited benefit in these cases (Parkes et al., 2018).

Demographics and clinical characteristics for the par-
ticipants that underwent fMRI scanning are listed in
Table 1. A total of 58 subjects were included, with a mean
age of 70 years, ranging from 55 to 92 years old, with
39 men and 19 women.

2.2 | Cognitive evaluation

All patients underwent a comprehensive battery of neu-
ropsychological tests. Included in the battery was the
Montreal Cognitive Assessment (MoCA), Mattis Demen-
tia Rating Scale 2 (DRS-2), Trail Making Test (TMT) Parts
A and B, Brief Test of Attention (BTA), Boston Naming
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Test (BNT), Verbal Phonemic Fluency (FAS), California
Verbal Learning Test 2nd Edition (CVLT-II), Judgment
of Line Orientation (JLO), and the Symbol Digits Modal-
ity Test (SDMT). These tests were chosen based on previ-
ous work validating the PD-MCI diagnostic criteria
(Goldman et al., 2013).

Not all patients were able to complete the full
cognitive battery. Per patient’s self-reports, this was
typically due to mental fatigue or worsening motor
symptoms. Although these symptoms likely overlap with
cognitive impairment in some subjects, this is not the
case for all subjects. Therefore, to avoid introducing
potential estimation bias due to missing data, a multiple
imputation procedure was used to infer missing cognitive
scores (Buuren, 2018; Nakagawa & Freckleton, 2008).
This procedure is currently accepted as the best general
method to deal with incomplete data. Additionally,
multiple imputation introduces less bias than

alternatives, such as surrogate scores based on a “worst-
case” scenario.

Cognitive data were checked for missing observations
and found to violate the assumption that data were miss-
ing completely at random (MCAR; Little’s MCAR Test,
p = 0.007). Therefore, data were imputed to create five
multiple imputations using Markov chain Monte Carlo
(MCMC) simulation, and pooled results were used for
the final analyses. None of the imputed data significantly
differed from the original data (all p > 0.05).

For data reduction purposes, and in contrast to multi-
ple comparisons with the individual cognitive tests used,
cognitive composite scores were created using principal
components analysis (PCA) for each set of imputed data
separately. Tests were grouped conceptually following
their theoretical relation to the underlying cognitive pro-
cesses they measure. Composite scores were created from
the uncorrected raw scores for two tests per domain as

TAB L E 1 Patient demographic, clinical and cognitive characteristics

Range (min:max) Missing data (n)

Sex (M, F) n = 39, n = 19

Age 70.42 ± 7.94 55:92

Education 16.21 ± 2.75

H & Y stage 2.71 ± 1.05 0:5

UPDRS part III 22.43 ± 8.8 0:43

LEDD 530.28 ± 431.84 0:2100

MoCA 24.52 ± 4.26 9:30 0

DRS-2 132.97 ± 12.27 82:144 0

TMT part A 56.27 ± 53.96 22.0:402.0 2

TMT part B 159.81 ± 128.44 48.0:300.0 6

BTA 11.74 ± 8.32 2:20 4

BNT 55.91 ± 3.84 47:60 4

Verbal fluency 34.76 ± 16.9 12:63 4

CVLT-II trials 1–5 34.5 ± 13.7 11:69 3

CVLT-II long delay 6.57 ± 4.7 0:16 3

SDMT Oral 35.31 ± 27.76 15:69 3

JLO score 25.93 ± 5.11 11:34 3

Attention composite �0.01 ± 1.06 �6.51:0.86

Executive function composite 0.03 ± 1.02 �5.54:1.03

Language composite 0.06 ± 0.87 �3.63:1.30

Learning & memory composite 0.03 ± 1.02 �3.08:1.93

Global cognition composite 0.06 ± 0.98 �4.00:1.20

Visuospatial 0.00 ± 1.00 �2.92:1.58

Note: Values are mean ± standard deviation unless otherwise indicated. Key: LEDD, levodopa equivalent daily dose; H & Y, Hoehn and Yahr stage; UDPRS-III,

Unified Parkinson’s Disease Rating Scale; MoCA, Montreal Cognitive Assessment; DRS-2, Dementia Rating Scale 2; TMT, Trail Making Test; BTA, Brief Test of
Attention; BNT, Boston Naming Test; CVLT-II, California Verbal Learning Test 2nd Edition; SDMT, and the Symbol Digits Modality Test; JLO, Judgment of
Line Orientation.
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follows: Attention (TMT-A and BTA), Executive Function
(TMT-B and SDMT Oral), Language (BNT and FAS),
Learning and Memory (CVLT-II Trials 1–5 Total Learn-
ing Score and CVLT-II Long Delay Free Recall), and
Global Cognition (MoCA and DRS-2 total scores). No
composite score was created for the visuospatial domain,
given that only one test score was available. Therefore, a
sample-based z-score was created from JLO scores and
used as a measure of visuospatial ability. Summary statis-
tics for each individual cognitive test and composite
scores are listed in Table 1.

2.3 | MRI acquisition

Images were acquired on a 3.0T Signa scanner (General
Electric, Milwaukee), using an 8-channel head coil and a
3-D, extended dynamic range, inversion recovery SPGR
ASSET parallel imaging sequence. Structural scans were
acquired with the following parameters: TR = 2200 ms,
TE = 2 ms, matrix = 256 � 256, voxel size = 1 � 1 mm2,
slice thickness = 1 mm, flip angle = 8�. Functional scans
were acquired with the following parameters:
TR = 2000 ms, TE = 26 ms, matrix = 64 � 64, voxel
size = 3.4 � 3.4 mm2, slice thickness = 3.5 mm,
gap = 1.5 mm, interleaved, flip angle = 70�. Total resting
state scanning time 10 min. MRI images were acquired
within 1 day of neurocognitive testing.

2.4 | Structural preprocessing and VBM
analysis

VBM is a common neuroimaging method used to quan-
tify atrophy in vivo using structural MRI scans
(Ashburner & Friston, 2000). It is a data-driven, whole-
brain, and automated analytic technique, able to measure
neuropathologic changes in gray matter volume at the
voxel level resulting from neuropsychiatric and neuro-
logic disorders, including PDD (Delgado-Alvarado
et al., 2016).

VBM was implemented using SPM12 (https://www.
fil.ion.ucl.ac.uk/spm/software/spm12). Subject’s struc-
tural images were segmented into gray matter, white
matter, and cerebrospinal fluid (CSF) using unified seg-
mentation (Ashburner & Friston, 2005). Normalization to
Montreal Neurological Institute (MNI) space was accom-
plished using a nonlinear DARTEL transform
(Ashburner, 2007). Normalized images were then modu-
lated to ensure that the overall amount of tissue type was
not altered during spatial normalization. Finally, images
were smoothed with an 8-mm full-width at half-
maximum Gaussian kernel.

Associations between gray matter volume and cogni-
tive measures were measured using a general linear
model, with age, sex, education, and intracranial volume
as covariates. Significance threshold was determined with
a cluster-defining threshold (CDT) of p < 0.005, and a
cluster-level threshold of p < 0.05, corrected by false dis-
covery rate (FDR).

2.5 | Functional connectivity analysis

2.5.1 | Functional preprocessing

fMRI data were preprocessed using SPM12 (https://www.
fil.ion.ucl.ac.uk/spm/software/spm12) for each subject
individually. The first four images were excluded for satu-
ration effects. Echo planar images from each subject were
realigned to subject’s mean volume, resliced to isotropic
3-mm voxels, normalized to the MNI template using uni-
fied segmentation (Ashburner & Friston, 2005), and
smoothed with an 8-mm full-width at half-maximum
Gaussian kernel.

2.5.2 | Independent component analysis
(ICA)

Spatial ICA was carried out using GIFT v3.0b (https://
icatb.sourceforge.net; Calhoun et al., 2001). Fifty compo-
nents were estimated based on minimum description
length (MDL) criteria and extracted using the infomax
algorithm (Bell & Sejnowski, 1995; Li et al., 2007). Voxel
time series were temporally concatenated across subjects
and then variance-normalized in ICA preprocessing. Two
PCA data reduction steps were used, with 70 and 50 com-
ponents included after each. Resulting component spatial
maps were back-reconstructed with GICA3 and scaled to
z-scores (Erhardt et al., 2011). All spatial maps and time
courses were visually inspected to identify noise compo-
nents. Ten components were identified as artifacts based
on spatial distributions that were primarily in CSF or
white matter, or high-frequency oscillations, and were
excluded from further analysis. To identify common
intrinsic connectivity networks (ICNs) such as the default
mode network, group mean ICA spatial maps were corre-
lated with published ICA templates (Shirer et al., 2012;
Yeo et al., 2011). ICA components without template
matches were described based on anatomy (e.g., a bilat-
eral anterior temporal lobe network). Following group
ICA and template matching, whole-brain networks were
back-reconstructed individually for each subject in order
to investigate associations with that subject’s cognitive
scores.

WYLIE ET AL. 515
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2.5.3 | Subject-level whole-brain network
construction

Next, back-reconstructed ICN time series were correlated
with each voxel’s time series in a functional connectivity
analysis (Figure 1). The resulting vector of bivariate sim-
ple correlations for each voxel represents the set of extrin-
sic inputs and outputs unique to that voxel, which has
been termed its “connectional fingerprint” (Passingham
et al., 2002). In this context, connectivity refers to a vox-
el’s interactions with the entire neural processing system,
or large-scale networks identified with ICA, rather than
its connectivity with another voxel. To calculate connec-
tional fingerprints, nuisance signals such as CSF, white
matter, and six movement parameters were regressed out
of all time series. Time points with excessive movement
were censored (Power et al., 2012). Following nuisance
signal removal and movement control precautions, time

series for every gray matter voxel was correlated with
each ICN component time series. The resulting vector of
correlations, the voxel’s connectional fingerprint, effi-
ciently and comprehensively summarizes its connectivity
to all regions within the brain and was subsequently
tested for associations with cognitive scores, after remov-
ing the influences of age, sex, and education using linear
regression residuals (Hua & Ghosh, 2015).

2.5.4 | Cognitive associations with voxels

Distance covariance is a recently developed multivariate
technique that tests the statistical independence of two
vectors with arbitrary dimensions (Székely et al., 2007).
The dCov statistic is zero if and only if the random vec-
tors are independently distributed and increasingly posi-
tive otherwise. Compared with similar techniques

F I GURE 1 dCov analysis overview. Step 1: Network construction. Independent components analysis (ICA) was used to estimate time

series for intrinsic connectivity networks (ICNs) in subject’s fMRI scans. All ICN time series were correlated with all voxel time series,

resulting in a bipartite graph, with a vector of correlations representing each voxel’s higher-level associations. Step 2: Cognitive associations

with voxels. Distance covariance (dCov) was applied to each voxel’s connectivity vector individually, resulting in a dCov test statistic for each

voxel. A cluster-level permutation test was used to correct for multiple comparisons, resulting in a whole-brain volume displaying where in

the brain connectivity is associated with the cognitive measure. Step 3: Networks contributing to cognitive associations. dCov was then

applied to each individual connection for all voxels surviving multiple comparison correction. A network-level permutation test was used to

correct for multiple comparisons. Resulting bipartite graph shows which ICNs contribute to associations between cognition and the voxels in

the previous step.
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(e.g., mass univariate Pearson correlations, and maximal
information coefficient), dCov has demonstrated
increased statistical power for identifying associations in
large datasets (Simon & Tibshirani, 2014). Code used to
calculate dCov in the current study are publicly available
(https://github.com/koreywylie/Analyses_toolbox).

dCov analyses in the current study proceeded in two
steps. First, dCov was calculated for each gray matter
voxel, using each subject’s connectivity vector for that
voxel along with the subject’s cognitive domain score (see
Section 2.2) as input (Figure 1). This resulted in an unthre-
sholded whole-brain statistical map, showing associations
between voxel-level connectivity and cognitive scores.
Results were thresholded and corrected for multiple com-
parisons using a modification of Nichol’s cluster-level non-
parametric test (Nichols & Holmes, 2002). Consistent with
the null hypothesis of no clusters of adjacent voxels, 5000
volumes were generated by permuting subject’s cognitive
scores for each voxel. Empirical cumulative distribution
functions (c.d.f.) were calculated for each voxel as the pro-
portion of times the permutation dCov statistic exceeded
the original dCov statistic at that voxel. For the permuta-
tion volumes, an empirical c.d.f. for all voxels were calcu-
lated in an identical manner. All volumes were then
thresholded using a CDT of p < 0.005. Lastly, resulting
cluster sizes were calculated. In the original (i.e., non-per-
mutation) thresholded whole-brain statistical map, a clus-
ter was considered significant after correcting for multiple
comparisons if the permutation p-value of obtaining a
cluster this size or larger was significant at p < 0.05. Signif-
icant clusters were displayed as cortical surface projections
(Fischl et al., 1999) using functions provided by nilearn
(https://nilearn.github.io/).

2.5.5 | Networks contributing to cognitive
associations

To better understand the specific elements of the connec-
tivity vector that contributed to each voxel’s significance in
the whole-brain analysis, dCov was used to test connectiv-
ity of the elements of the vector individually, using an
individual scalar correlation coefficient and the scalar cog-
nitive score as input (Figure 1). Resulting dCov statistics
for each connection were thresholded and corrected for
multiple comparisons using a cluster-level permutation
test, similar to that used in the preceding voxel-level asso-
ciation analysis. First, dCov was applied to individual con-
nections between a voxel and an ICN (Figure 1). Next,
empirical c.d.f. were calculated and compared against a
CDT. In contrast to the voxel-level analysis (see
Section 2.5.4), however, the definitions of “cluster” and
“adjacent” in the context of a network are unclear. This

discrepancy can be resolved using definitions provided by
the field of graph theory. In graph theory, a connection is
said to be adjacent to an ICN node if it is connected to it,
for example, if an edge between nodes i and j is denoted
by the ordered pair (i, j), then it is adjacent to nodes i and j
(Newman, 2010). Using this definition, a cluster is defined
as a set of adjacent connections. As such, cluster size is
determined as the number of connections to an individual
ICN (“unweighted degree” in graph theory terminology).
With this definition, cluster size was calculated and com-
pared with the null distribution from a non-parametric
permutation test. An individual connection was consid-
ered significant, after correcting for multiple comparisons,
if it was located within a cluster of significant size.

In order to determine the ICNs influencing the associ-
ation between cognitive scores and neuroanatomy, all
significant voxels (p < 0.05, corrected) in the voxel-level
association analysis were analyzed in the network-level
association analysis. dCov was calculated for each con-
nection to every ICN. Each connection was thresholded
with a CDT of p < 0.005. The null distribution of the
unweighted degree was calculated using 5000 permuta-
tion networks and used to correct for multiple compari-
sons at the network level. An individual connection was
considered significant, after correcting for multiple com-
parisons, if the degree of its adjacent ICN node was sig-
nificant at p < 0.05. Significant connections were
displayed as two-dimensional sagittal, coronal, and axial
projections in MNI space in the “glass brain” format,
along with volumetric renderings of subcortical struc-
tures (Hammers et al., 2003).

3 | RESULTS

3.1 | Demographic, clinical and cognitive
characteristics of participants

Baseline group sex differences were associated with age
(M > F, t = �3.1, p = 0.003), attention (M < F, t = 3.1,
p = 0.004), executive function (M < F, t = 3.9,
p = 0.0002), language (M < F, t = 3.1, p = 0.003), learn-
ing and memory (M < F, t = 3.2, p = 0.002), and global
(M < F, t = 3.4, p = 0.001) cognitive composite scores.
Following removing the effects of age, sex, and education
with linear regression, no significant group differences
were observed (t = 0 in all cases).

3.2 | ICA and network identification

In the functional connectivity analysis, 40 ICNs matched
templates for known networks, including 14 networks
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commonly identified in fMRI (Shirer et al., 2012) and sev-
eral of their subnetworks. ICNs associated with cognitive
domains are displayed in Figure S1, all other template-
matching ICNs in Figure S2, and ICA components
matching noise templates in Figure S3. The somatomotor
network (SM) was subdivided into dorsal and ventral
components (dSM and vSM, respectively), corresponding
to spatial maps primarily centered on the body and facial
representations of the sensorimotor cortex (Yeo
et al., 2011), as well as left and right components (L SM
and R SM, respectively), corresponding to lateralized
hand representations of the sensorimotor cortex. Other
ICNs corresponded to association regions for other pri-
mary sensory modalities, such as the lateral visual associ-
ation network (lat Visual Assoc) encompassing bilateral
occipitotemporal regions. Limbic and paralimbic net-
works included bilateral insulae, medial temporal (med
Temporal), orbitofrontal, and anterior temporopolar
(aTempPolar) networks. Higher association cortices were
encompassed by ICNs centered on the right and left dor-
solateral prefrontal cortices (R dlPFC and L dlPFC,
respectively), and precuneus (PrC) networks. Subcortical
networks included distinct ICNs encompassing putamen
and caudate. These latter ICNs represent widespread
activity throughout the entire bilateral putamen or cau-
date respectively.

3.3 | Associations with cognitive
domains

Following ICA and network identification, each voxel’s
connectivity was tested for associations with cognitive
composite scores from each domain using dCov in a
whole-brain analysis. The analysis proceeded in two
steps (Figure 1). First, the neuroanatomical regions
associated with each cognitive domain were identified
by examining each voxel’s connectivity. Second, the
specific influential ICNs contributing to each cluster
identified in the previous step were identified. For
each cognitive domain, this dual level analysis local-
ized both the neuroanatomy as well as the networks
influencing processing associated with that domain
in PD.

3.4 | Attention

Attention cognitive composite scores were associated
with connectivity to clusters in the right inferior gyrus,
right and left middle frontal gyri, right subgenual cin-
gulate cortex, right gyrus rectus, and left middle cingu-
late cortex (Figure 2, significant at cluster-level
p < 0.05, corrected). Cluster sizes and locations in

F I GURE 2 Cortical and network associations with attention. Left: Cortical associations displayed as surface renderings. Distance

covariance (dCov) was applied to each voxel’s connectivity vector, followed by a cluster-level correction for multiple comparisons, resulting

in clusters of voxels associated with attention cognitive composite scores. Attention was associated with connectivity to right inferior gyrus,

right and left middle frontal gyri, right subgenual cingulate cortex, right gyrus rectus, and left middle cingulate cortex (all clusters p < 0.05,

corrected). Right: Intrinsic connectivity networks (ICNs) influencing cortical associations. Distance covariance was then applied to the

individual components of each voxel’s connectivity vector, identifying connectivity with ICNs influencing associations with cognitive scores.

Seven ICNs influenced associations with attention scores, including the dorsal attention (DAN), primary auditory (Primary Aud), lateral

visual association (lat Visual Assoc), supplementary somatomotor (Suppl SM), and anterior temporopolar (aTempPolar) networks (all

connections p < 0.05, corrected).
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terms of MNI coordinates for all significant clusters of
association are listed in Table S1. No subcortical
clusters were associated with attention scores (all
clusters p > 0.05, corrected). Specifically, no localized
cluster of voxels within the putamen were associated
with attention scores. However, as noted below, the
bilateral putamen network as a whole contributed
to associations with attention scores in the above
clusters.

Seven networks significantly contributed to associa-
tions between attention scores and the above clusters.
The Dorsal Attention Network (DAN) was the most
influential, affecting associations with voxels in the right
inferior frontal gyrus and subgenual anterior cingulate.
Connectivity involving the bilateral putamen and
aTempPolar ICNs influenced associations in the subgen-
ual anterior cingulate and middle frontal gyri clusters
bilaterally. Additional influential networks included pri-
mary and associative motor and sensory networks, such
as the supplementary somatomotor (Suppl SM), iat
visual assoc, primary auditory, and insulae networks
(Figure 2, right, all connections significant at p < 0.05,
corrected).

In contrast to the functional connectivity associations,
gray matter volume was not associated with attention
cognitive composite scores in the VBM analysis (all clus-
ters p > 0.05, corrected).

3.5 | Executive function

Executive function composite scores were primarily asso-
ciated with connectivity involving subcortical and para-
limbic clusters. These included clusters in the left
thalamus, left putamen, bilateral parahippocampal gyri,
left hippocampus, bilateral anterior temporal poles, sub-
genual anterior cingulate, and orbitofrontal cortices
(Figure 3, significant at cluster-level p < 0.05 corrected).
Cluster sizes and locations in terms of MNI coordinates
for all significant clusters of association are listed in
Table S2. Four ICNs influenced associations with these
clusters, including the insulae, iat visual assoc, aTempPo-
lar, and language networks (Figure 3, right, all connec-
tions significant at p < 0.05, corrected).

Gray matter volume was not associated with execu-
tive function composite scores in the VBM analysis (all
clusters p > 0.05, corrected).

3.6 | Language

Language composite scores were primarily associated
with premotor regions, including clusters in the left mid-
dle and superior frontal gyri, extending into the left sup-
plementary motor area (Figure 4, significant at cluster-
level p < 0.05 corrected). Additional clusters were located

F I GURE 3 Cortical and network associations with executive function. Left: Cortical associations displayed as surface renderings. As

measured by distance covariance (dCov), executive function was associated with clusters in the left thalamus, left putamen, bilateral

parahippocampal gyri, left hippocampus, bilateral anterior temporal poles, subgenual cingulate, and orbitofrontal cortices (all clusters

p < 0.05, corrected). Right: Intrinsic connectivity networks (ICNs) influencing cortical associations. Four ICNs influenced associations with

executive function scores, including the language, insulae, anterior temporopolar (aTempPolar), and lateral visual association (lat Visual

Assoc) networks (all connections p < 0.05, corrected). Subcortical hippocampal and basal ganglia volumes are outlined in gray for visual

orientation relative to position of significant voxels (red circles).
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in the medial orbitofrontal, olfactory cortices, and the left
cerebellum. Cluster sizes and locations in terms of MNI
coordinates for all significant clusters of association are
listed in Table S3.

Eleven ICNs influenced associations with these clus-
ters (Figure 4, right, all connections significant at
p < 0.05, corrected). The influences of somatomotor and
associative sensory networks were prominent, including
several somatomotor such as the L SM, R SM, and dSM.
Additional influential sensory and motor networks

included the motor planning network, encompassing
the pre-supplementary motor area, as well as auditory
assoc, iat visual assoc and DAN. Influential limbic
networks included the med temporal, insulae, and
olfactory networks. Finally, the Putamen Network influ-
enced associations with cerebellar and subgenual
clusters.

Gray matter volume was not associated with language
cognitive composite scores in the VBM analysis (all clus-
ters p > 0.05, corrected).

F I GURE 4 Cortical and network associations with language. Left: Cortical associations displayed as surface renderings. As measured

by distance covariance (dCov), language cognitive composite scores were associated with clusters in the left superior frontal gyrus, bilateral

middle frontal gyrus, medial orbitofrontal and olfactory cortices, and left cerebellum (all clusters p < 0.05, corrected). Right: Intrinsic

connectivity networks (ICNs) influencing cortical associations. Eleven ICNs influenced associations with language scores, including left and

right and dorsal subdivisions of the somatomotor network, (L SM, R SM, and dSM, respectively), lateral visual association (lat Visual Assoc),

the dorsal attention (DAN), auditory association (aud assoc), and medial temporal (med temporal) networks (all connections p < 0.05,

corrected).

F I GURE 5 Cortical and network

associations with learning and memory.

Left: Cortical associations displayed as

surface renderings. As measured by distance

covariance (dCov), learning and memory

were associated with clusters in the left

middle and superior frontal gyri and the

medial prefrontal cortex (all clusters

p < 0.05, corrected). Right: Intrinsic

connectivity networks (ICNs) influencing

cortical associations. Four ICNs influenced

associations with learning and memory

scores, including the medial temporal (med

temporal), orbitofrontal, medial prefrontal

(med prefrontal), and olfactory networks

(all connections p < 0.05, corrected).
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3.7 | Learning and memory

Learning and memory composite scores were associated
with three clusters in the left prefrontal cortex, including
the middle and superior frontal gyri and the medial pre-
frontal cortex (Figure 5, significant at cluster-level
p < 0.05 corrected; Table S4). Four networks influenced
associations with these clusters, including the Orbitofron-
tal, med Temporal, Medial Prefrontal (med Prefrontal),
and Olfactory networks (Figure 5, right, all connections
significant at p < 0.05, corrected). Gray matter volume
was not associated with learning and memory composite
scores in the VBM analysis (all clusters p > 0.05,
corrected).

3.8 | Visuospatial

Visuospatial scores were associated with connectivity
involving a cluster in the left lingual gyrus along the cal-
carine sulcus, and a cluster in the right fusiform gyri that
extended into the parahippocampal gyrus (Figure 6, left,
significant at cluster-level p < 0.05 corrected; Table S5).
The bilateral caudate and precuneus (PrC) networks
influenced associations with the left lingual gyrus, while
the L SM influenced associations with the right fusiform
cluster (Figure S4).

Gray matter volume in many cortical and subcortical
regions were associated with visuospatial scores
(Figure 6, right, significant at cluster-level p < 0.05 cor-
rected). Clusters of increased gray matter in the bilateral

pre-central gyri, bilateral opercula, right middle temporal
gyrus, left superior temporal gyrus, and medial cerebel-
lum were associated with increased visuospatial scores
(Table S6).

3.9 | Global cognition

Global cognition composite scores were associated with a
cluster in the left superior thalamus, as well as a cluster
in the right cerebellum (x = �18, y = �28, z = 14,
k = 27 voxels; significant at cluster-level p < 0.05 cor-
rected; Figure S5, Table S7). Associations with the right
cerebellar cluster were influenced by connectivity to the
L SM and L dlPFC networks. Connectivity involving four
ICNs influenced associations with the left thalamic clus-
ter, including the putamen, R dlPFC, L dlPFC, and motor
planning networks. Gray matter volume was not associ-
ated with global cognition composite scores in the VBM
analysis (all clusters p > 0.05, corrected).

4 | DISCUSSION

As hypothesized, cognitive measures in PD were associ-
ated with connectivity involving the hippocampus and
basal ganglia. Additionally, beyond these hypothesized
regions, associations were observed for cortical regions.
The hypothesized associations were most evident for
executive function composite scores, where connectivity
involving subcortical and paralimbic regions influenced

F I GURE 6 Functional and structural cortical associations with visuospatial processing. Left: Cortical associations with functional

connectivity displayed as surface renderings, measured by distance covariance (dCov). Connectivity was associated with visuospatial scores

in the left lingual gyrus along the calcarine sulcus and the right fusiform gyri (all clusters p < 0.05, corrected). Right: Cortical associations

with gray matter volumes, measured by voxel-based morphometry. Visuospatial scores were associated with gray matter volume in the

bilateral pre-central gyri, bilateral operculum, right middle temporal gyrus, left superior temporal gyrus, and medial cerebellum (all clusters

p < 0.05, corrected).
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cognitive composite scores. In addition, other cognitive
domains were associated with networks encompassing
these subcortical regions. These included influences of
the bilateral Putamen Network on attention, language
and global cognition composite scores, the influence of
the Caudate Network on visuospatial scores, and the
influence of the Medial Temporal Network on associa-
tions with language, learning and memory composite
scores. These results suggest that disease-associated
pathology in these subcortical regions may lead to wide-
spread dysfunctional cortical connectivity and the cogni-
tive impairments associated with PD.

In healthy elderly subjects, total cortical atrophy is
associated with cognitive decline resulting from normal
aging (Chee et al., 2009; Fjell & Walhovd, 2010; Kramer
et al., 2007; Van Petten et al., 2004). However, atrophy in
specific regions such as the dlPFC, and its contributions
to individual cognitive domains such as executive func-
tion, remain an open question in this population. Reports
of specific structure-cognition associations in the absence
of pathology are inconsistent and weakly supported by
evidence (Fjell & Walhovd, 2010; Raz & Rodrigue, 2006;
Salthouse, 2011). Contributing to this inconsistency are
reports of counterintuitive negative correlations between
regional gray matter volume and cognitive performance
(Duarte et al., 2006; Salat et al., 2002; Van Petten
et al., 2004). These results may suggest structure-
cognition associations reflect pre-existing differences
from earlier stages in the lifespan, such as synaptic prun-
ing, rather than purely later age-related cognitive decline.

In neuropsychiatric patients, atrophy in specific
regions is frequently associated with cognitive functions.
In patients with Alzheimer’s disease or vascular mild cog-
nitive impairment, frontal gray matter volume correlates
with executive function (Duarte et al., 2006; Lei
et al., 2016). In patients with mild cognitive impairment,
visuospatial deficits are associated with frontotemporal
atrophy (Mitolo et al., 2013). Similar associations
between visuospatial deficits and atrophy have been
observed in a broad sample including patients with Alz-
heimer’s disease, mild cognitive impairment, and healthy
controls (Amaefule et al., 2021). In PD-MCI, visuospatial
deficits have been associated with both frontal and parie-
totemporal atrophy (Garcia-Diaz et al., 2018; Lee
et al., 2014; Segura et al., 2014).

In the current investigation gray matter atrophy was
not generally associated with cognitive variability in PD,
with the notable exception of visuospatial scores. These
results suggest that functional connectivity may be a
more sensitive marker of neuropathology associated with
cognitive changes in PD. Furthermore, while both func-
tional connectivity and VBM can link cognitive domains
to specific regions within the brain, functional

connectivity potentially provides additional information
about the dysfunctional processing associated with these
deficits. For example, in the current investigation, con-
nectivity to and from specific large-scale networks and
the hippocampus and putamen contribute to specific cog-
nitive impairments in PD.

Visuospatial associations with gray matter volume dif-
fered from associations with functional connectivity.
While functional connectivity results were localized to
the primary visual cortex and fusiform gyrus, gray matter
volume was associated with primary sensory and motor
cortices as well as with anterior (temporal and frontal)
regions. In this case, the connectivity results appeared to
reflect the disrupted visual processing evident in neuro-
psychological testing results in combination with under-
lying basal ganglia pathology in patients with PD
(Emre, 2003a). Abnormal BOLD activity in visual net-
works in subjects with PD and cognitive impairments has
been recently reported (Guo et al., 2021), suggesting a
relationship between visual system alterations and cogni-
tion in PD. Interestingly, we did not observe an associa-
tion between gray matter atrophy in posterior regions
and visuospatial scores, previously reported with cortical
thinning measures (Garcia-Diaz et al., 2018; Segura
et al., 2014). However, because similar associations
between visuospatial scores, temporoparietal, and frontal
cortices were reported in early PD (Pereira et al., 2014),
current results suggest that gray matter loss may progress
to posterior regions along with decline in visuospatial
ability.

Attention cognitive composite associations in PD fol-
lowed the proposed dual attention systems within the
brain (Corbetta & Shulman, 2002). The DAN exerted
widespread influence on many regions, suggesting goal-
directed and top-down influences on these cognitive mea-
sures. Acting in tandem with the DAN, the stimulus-
driven Ventral Attention System encompasses right-
lateralized frontoparietal regions such as the right infe-
rior and middle frontal gyri. In the current results, associ-
ations between attention scores and predominantly right
lateralized clusters in the inferior and middle frontal gyri
may reflect influences of this system. Interactions
between these clusters and the DAN may suggest an
interplay between goal-driven and stimulus-driven direct-
ing of external attention as needed during cognitive test-
ing, consistent with the proposed roles of these systems
(Corbetta & Shulman, 2002).

Language cognitive composite scores were associated
with clusters in premotor areas, such as the superior and
medial frontal gyri. Similarly, language composite scores
were influenced by connectivity involving the motor
planning and insulae networks, in addition to subdivi-
sions of the SM. These results are consistent with regions
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activated during verbal fluency tasks in healthy controls
(Corbetta & Shulman, 2002) and may reflect difficulties
in the initiation and maintenance of attentional resources
required during the cognitive tests.

Three gray matter regions were prominent in both
the neuroanatomical and network levels of the analysis,
namely the putamen, the hippocampus, and the olfac-
tory cortex. Associations between connectivity involving
the basal ganglia and hippocampus and executive func-
tion in PD is consistent with our hypothesis as well as
the proposed broader primary and progressive pathology
associated with the disease (Braak et al., 2003; Goedert
et al., 2013). Similarly, the olfactory bulb is an early site
of synuclein inclusions, with spread into the adjacent
subgenual anterior cingulate as the disease progresses
(Vogt, 2019). Interestingly, and consistent with the cur-
rent results, abnormal activation in the hippocampus in
PD patients has been associated with executive function
task performance, even in patients without cognitive
symptoms at baseline (Dagher et al., 2001). In contrast,
hippocampal atrophy seems to be found in later stages
of the disease (Christopher & Strafella, 2013; Delgado-
Alvarado et al., 2016; Nagano-Saito et al., 2005). Given
that executive function deficits are observed in early
PD-MCI patients, hippocampal abnormalities could be
early markers of disease progression. Decreased dopa-
mine synthesis in the putamen of people with PD (Kish
et al., 1988) is associated with performance deficits on
tests of executive function, suggesting that dopamine
depletion in this region impacts processing in frontos-
triatal circuits (Cropley et al., 2008), consistent with
the connectivity results. Therefore, the associations
between hippocampal and putamen connectivity with
executive function, combined with non-significant
associations between atrophy in the same regions and
the same cognitive tests, suggest that disrupted hippo-
campal and putamen function and connectivity may be
more prominent than atrophy in cognitive subgroups
of PD.

Strengths of this study are its data-driven, holistic,
fine-grained approach to analyzing cognitive associations
using neuroimaging. These include a multidomain neu-
rocognitive battery, voxel-level whole-brain analyses
encompassing numerous large-scale networks, and com-
parison of structural and functional measures. The limi-
tations of the current study include the lack of healthy
comparison group and small sample size, precluding sub-
group analyses including sex differences, as well as possi-
ble confounding effects from antiparkinsonian
medications. Additionally, subjects may have had over-
lapping neurodegenerative disorders, such as PD and
Alzheimer’s disease. Future research directions include
developing non-invasive neuroimaging tests to

investigate dysfunctional connectivity implicated in cog-
nitive impairment in PD, as well as measuring Alzhei-
mer’s disease biomarkers in order to rule out the effects
of overlapping clinical diagnoses.

5 | CONCLUSION

In summary, cognitive domain-associated neuropathol-
ogy in PD patients was investigated using a combination
of structural and functional neuroimaging. Gray matter
atrophy, as measured using VBM, was associated with
visuospatial impairments involving primary sensory and
motor regions and networks. In contrast, functional con-
nectivity, as measured using dCov and ICA, was associ-
ated with all cognitive domains, including attention and
executive function, the primary cognitive domains
impacted in PD. These results suggest that, in compari-
son to gray matter atrophy, functional connectivity may
be more sensitive for investigating the neurobiology of
cognitive phenotypes in PD. Performance on executive
function cognitive tests was localized to connectivity
involving the hippocampus and putamen. These results
are consistent with the known pathophysiology of PD,
and previous data-driven comprehensive investigations of
dementia in PD.

ACKNOWLEDGEMENTS
All phases of this study were supported by three National
Institutes of Health grants 1K02NS080885-01A1 (PI: Klu-
ger), 1R21NS093266-01A1 (PI: Kluger), and K01
AT009894-01 (PI: Buard) and a Michael J. Fox Founda-
tion for Parkinson’s Research (Grant Number 10879; PI:
Holden). The authors wish to thank Christine Martin,
Sarah Rogers, and Abigail Simpson for their help with
participant recruitment and neuropsychological testing
administration.

CONFLICT OF INTEREST
The author reports no conflicts of interest in this work.

AUTHOR CONTRIBUTIONS
All authors have contributed to and approved the final
manuscript. Conceptualization, K.P.W., B.M.K., and I.B.;
Methodology, K.P.W., L.D.M., Software, K.P.W.; Investiga-
tion, K.P.W., L.D.M., S.K.H., E.K., I.B.; Resources, B.M.K.,
J.R.T., I.B.; Writing -Original Draft, K.P.W., I.B.; Writing
-Review & Editing, B.M.K., L.D.M., S.K.H., E.K., J.R.T.;
Visualization, K.P.W.; Supervision, B.M.K., I.B.

PEER REVIEW
The peer review history for this article is available at
https://publons.com/publon/10.1111/ejn.15899.

WYLIE ET AL. 523

 14609568, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ejn.15899 by U

niversity O
f C

olorado D
enver, W

iley O
nline L

ibrary on [18/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://publons.com/publon/10.1111/ejn.15899


DATA AVAILABILITY STATEMENT
The data that support the findings of this study are
openly available in OpenNeuro at https://openneuro.org/
git/2/ds004392, doi:10.18112/openneuro.ds004392.v1.0.0,
reference number ds004392.

ORCID
Korey P. Wylie https://orcid.org/0000-0003-1331-9611

REFERENCES
Aarsland, D. (2016). Cognitive impairment in Parkinson’s disease

and dementia with Lewy bodies. Parkinsonism & Related Dis-
orders, 22(Suppl 1), S144–S148. https://doi.org/10.1016/j.
parkreldis.2015.09.034

Amaefule, C. O., Dyrba, M., Wolfsgruber, S., Polcher, A.,
Schneider, A., Fliessbach, K., Spottke, A., Meiberth, D.,
Preis, L., Peters, O., Incesoy, E. I., Spruth, E. J., Priller, J.,
Altenstein, S., Bartels, C., Wiltfang, J., Janowitz, D.,
Bürger, K., Laske, C., … Teipel, S. J. (2021). Association
between composite scores of domain-specific cognitive func-
tions and regional patterns of atrophy and functional connec-
tivity in the Alzheimer’s disease spectrum. NeuroImage.
Clinical, 29, 102533. https://doi.org/10.1016/j.nicl.2020.102533

Amboni, M., Tessitore, A., Esposito, F., Santangelo, G., Picillo, M.,
Vitale, C., Giordano, A., Erro, R., de Micco, R., Corbo, D.,
Tedeschi, G., & Barone, P. (2015). Resting-state functional con-
nectivity associated with mild cognitive impairment in Parkin-
son’s disease. Journal of Neurology, 262(2), 425–434. https://
doi.org/10.1007/s00415-014-7591-5

Ashburner, J. (2007). A fast diffeomorphic image registration algo-
rithm. NeuroImage, 38(1), 95–113. https://doi.org/10.1016/j.
neuroimage.2007.07.007

Ashburner, J., & Friston, K. J. (2000). Voxel-based morphometry—
The methods. NeuroImage, 11(6), 805–821. https://doi.org/10.
1006/nimg.2000.0582

Ashburner, J., & Friston, K. J. (2005). Unified segmentation. Neuro-
Image, 26(3), 839–851. https://doi.org/10.1016/j.neuroimage.
2005.02.018

Bell, A. J., & Sejnowski, T. J. (1995). An information-maximization
approach to blind separation and blind deconvolution. Neural
Computation, 7(6), 1129–1159. https://doi.org/10.1162/neco.
1995.7.6.1129

Braak, H., Tredici, K. D., Rüb, U., de Vos, R. A. I., Jansen
Steur, E. N. H., & Braak, E. (2003). Staging of brain pathology
related to sporadic Parkinson’s disease. Neurobiology of Aging,
24(2), 197–211. https://doi.org/10.1016/S0197-4580(02)00065-9

Buuren, S. V. (2018). Flexible imputation of missing data (Second
edition. ed.). CRC Press, Taylor & Francis Group. https://doi.
org/10.1201/9780429492259

Calhoun, V. D., Adali, T., Pearlson, G. D., & Pekar, J. J. (2001). A
method for making group inferences from functional MRI data
using independent component analysis. Human Brain Map-
ping, 14(3), 140–151. https://doi.org/10.1002/hbm.1048

Chee, M. W., Chen, K. H., Zheng, H., Chan, K. P., Isaac, V.,
Sim, S. K., Chuah, L. Y. M., Schuchinsky, M., Fischl, B., &
Ng, T. P. (2009). Cognitive function and brain structure corre-
lations in healthy elderly east Asians. NeuroImage, 46(1), 257–
269. https://doi.org/10.1016/j.neuroimage.2009.01.036

Christopher, L., & Strafella, A. P. (2013). Neuroimaging of brain
changes associated with cognitive impairment in Parkinson’s
disease. Journal of Neuropsychology, 7(2), 225–240. https://doi.
org/10.1111/jnp.12015

Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and
stimulus-driven attention in the brain. Nature Reviews Neuro-
science, 3(3), 201–215. https://doi.org/10.1038/nrn755

Cropley, V. L., Fujita, M., Bara-Jimenez, W., Brown, A. K.,
Zhang, X.-Y., Sangare, J., Herscovitch, P., Pike, V. W.,
Hallett, M., Nathan, P. J., & Innis, R. B. (2008). Pre- and
post-synaptic dopamine imaging and its relation with frontos-
triatal cognitive function in Parkinson disease: PET studies
with [11C]NNC 112 and [18F]FDOPA. Psychiatry Research,
163(2), 171–182. https://doi.org/10.1016/j.pscychresns.2007.
11.003

Dagher, A., Owen, A. M., Boecker, H., & Brooks, D. J. (2001). The
role of the striatum and hippocampus in planning: A PET acti-
vation study in Parkinson’s disease. Brain: A Journal of Neurol-
ogy, 124(Pt 5), 1020–1032. https://doi.org/10.1093/brain/124.5.
1020

Delgado-Alvarado, M., Gago, B., Navalpotro-Gomez, I., Jiménez-
Urbieta, H., & Rodriguez-Oroz, M. C. (2016). Biomarkers for
dementia and mild cognitive impairment in Parkinson’s dis-
ease. Movement Disorders: Official Journal of the Movement
Disorder Society, 31(6), 861–881. https://doi.org/10.1002/mds.
26662

Dirnberger, G., & Jahanshahi, M. (2013). Executive dysfunction in
Parkinson’s disease: A review. Journal of Neuropsychology,
7(2), 193–224. https://doi.org/10.1111/jnp.12028

Duarte, A., Hayasaka, S., Du, A., Schuff, N., Jahng, G. H.,
Kramer, J., Miller, B., & Weiner, M. (2006). Volumetric corre-
lates of memory and executive function in normal elderly,
mild cognitive impairment and Alzheimer’s disease. Neurosci-
ence Letters, 406(1–2), 60–65. https://doi.org/10.1016/j.neulet.
2006.07.029

Emre, M. (2003a). Dementia associated with Parkinson’s disease.
The Lancet. Neurology, 2(4), 229–237. https://doi.org/10.1016/
s1474-4422(03)00351-x

Emre, M. (2003b). What causes mental dysfunction in Parkinson’s
disease? Movement Disorders: Official Journal of the Movement
Disorder Society, 18(Suppl 6), S63–S71. https://doi.org/10.1002/
mds.10565

Emre, M., Aarsland, D., Brown, R., Burn, D. J., Duyckaerts, C.,
Mizuno, Y., Broe, G. A., Cummings, J., Dickson, D. W.,
Gauthier, S., Goldman, J., Goetz, C., Korczyn, A., Lees, A.,
Levy, R., Litvan, I., McKeith, I., Olanow, W., Poewe, W., …
Dubois, B. (2007). Clinical diagnostic criteria for dementia
associated with Parkinson’s disease. Movement Disorders: Offi-
cial Journal of the Movement Disorder Society, 22(12), 1689–
1707. https://doi.org/10.1002/mds.21507

Erhardt, E. B., Rachakonda, S., Bedrick, E., Allen, E., Adali, T., &
Calhoun, V. D. (2011). Comparison of multi-subject ICA
methods for analysis of fMRI data. Human Brain Mapping,
32(12), 2075–2095. https://doi.org/10.1002/hbm.21170

Fischl, B. (2012). FreeSurfer. NeuroImage, 62(2), 774–781. https://
doi.org/10.1016/j.neuroimage.2012.01.021

Fischl, B., Sereno, M. I., Tootell, R. B., & Dale, A. M. (1999). High-
resolution intersubject averaging and a coordinate system for
the cortical surface. Human Brain Mapping, 8(4), 272–284.

524 WYLIE ET AL.

 14609568, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ejn.15899 by U

niversity O
f C

olorado D
enver, W

iley O
nline L

ibrary on [18/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://openneuro.org/git/2/ds004392
https://openneuro.org/git/2/ds004392
https://orcid.org/0000-0003-1331-9611
https://orcid.org/0000-0003-1331-9611
https://doi.org/10.1016/j.parkreldis.2015.09.034
https://doi.org/10.1016/j.parkreldis.2015.09.034
https://doi.org/10.1016/j.nicl.2020.102533
https://doi.org/10.1007/s00415-014-7591-5
https://doi.org/10.1007/s00415-014-7591-5
https://doi.org/10.1016/j.neuroimage.2007.07.007
https://doi.org/10.1016/j.neuroimage.2007.07.007
https://doi.org/10.1006/nimg.2000.0582
https://doi.org/10.1006/nimg.2000.0582
https://doi.org/10.1016/j.neuroimage.2005.02.018
https://doi.org/10.1016/j.neuroimage.2005.02.018
https://doi.org/10.1162/neco.1995.7.6.1129
https://doi.org/10.1162/neco.1995.7.6.1129
https://doi.org/10.1016/S0197-4580(02)00065-9
https://doi.org/10.1201/9780429492259
https://doi.org/10.1201/9780429492259
https://doi.org/10.1002/hbm.1048
https://doi.org/10.1016/j.neuroimage.2009.01.036
https://doi.org/10.1111/jnp.12015
https://doi.org/10.1111/jnp.12015
https://doi.org/10.1038/nrn755
https://doi.org/10.1016/j.pscychresns.2007.11.003
https://doi.org/10.1016/j.pscychresns.2007.11.003
https://doi.org/10.1093/brain/124.5.1020
https://doi.org/10.1093/brain/124.5.1020
https://doi.org/10.1002/mds.26662
https://doi.org/10.1002/mds.26662
https://doi.org/10.1111/jnp.12028
https://doi.org/10.1016/j.neulet.2006.07.029
https://doi.org/10.1016/j.neulet.2006.07.029
https://doi.org/10.1016/s1474-4422(03)00351-x
https://doi.org/10.1016/s1474-4422(03)00351-x
https://doi.org/10.1002/mds.10565
https://doi.org/10.1002/mds.10565
https://doi.org/10.1002/mds.21507
https://doi.org/10.1002/hbm.21170
https://doi.org/10.1016/j.neuroimage.2012.01.021
https://doi.org/10.1016/j.neuroimage.2012.01.021


https://doi.org/10.1002/(sici)1097-0193(1999)8:4<272::aid-
hbm10>3.0.co;2-4

Fjell, A. M., & Walhovd, K. B. (2010). Structural brain changes in
aging: Courses, causes and cognitive consequences. Reviews in
the Neurosciences, 21(3), 187–221. https://doi.org/10.1515/
revneuro.2010.21.3.187

Gao, L.-L., & Wu, T. (2016). The study of brain functional connec-
tivity in Parkinson’s disease. Translational Neurodegeneration,
5, 18. https://doi.org/10.1186/s40035-016-0066-0

Garcia-Diaz, A. I., Segura, B., Baggio, H. C., Uribe, C.,
Campabadal, A., Abos, A., Marti, M. J., Valldeoriola, F.,
Compta, Y., Bargallo, N., & Junque, C. (2018). Cortical thin-
ning correlates of changes in visuospatial and visuoperceptual
performance in Parkinson’s disease: A 4-year follow-up. Par-
kinsonism & Related Disorders, 46, 62–68. https://doi.org/10.
1016/j.parkreldis.2017.11.003

Goedert, M., Spillantini, M. G., Del Tredici, K., & Braak, H. (2013).
100 years of Lewy pathology. Nature Reviews Neurology, 9(1),
13–24. https://doi.org/10.1038/nrneurol.2012.242

Goldman, J. G., Holden, S., Bernard, B., Ouyang, B., Goetz, C. G., &
Stebbins, G. T. (2013). Defining optimal cutoff scores for cogni-
tive impairment using Movement Disorder Society Task Force
criteria for mild cognitive impairment in Parkinson’s disease.
Movement Disorders, 28(14), 1972–1979. https://doi.org/10.
1002/mds.25655

Guo, W., Jin, W., Li, N., Gao, J., Wang, J., Chang, Y., Yin, K.,
Chen, Y., Zhang, S., & Wang, T. (2021). Brain activity alter-
ations in patients with Parkinson’s disease with cognitive
impairment based on resting-state functional MRI. Neurosci-
ence Letters, 747, 135672. https://doi.org/10.1016/j.neulet.2021.
135672

Hammers, A., Allom, R., Koepp, M. J., Free, S. L., Myers, R.,
Lemieux, L., Mitchell, T. N., Brooks, D. J., & Duncan, J. S.
(2003). Three-dimensional maximum probability atlas of the
human brain, with particular reference to the temporal lobe.
Human Brain Mapping, 19(4), 224–247. https://doi.org/10.
1002/hbm.10123

Hanagasi, H. A., Tufekcioglu, Z., & Emre, M. (2017). Dementia in
Parkinson’s disease. Journal of the Neurological Sciences, 374,
26–31. https://doi.org/10.1016/j.jns.2017.01.012

Hohenfeld, C., Werner, C. J., & Reetz, K. (2018). Resting-state con-
nectivity in neurodegenerative disorders: Is there potential for
an imaging biomarker? NeuroImage Clinica, 18, 849–870.
https://doi.org/10.1016/j.nicl.2018.03.013

Hua, W.-Y., & Ghosh, D. (2015). Equivalence of kernel machine
regression and kernel distance covariance for multidimen-
sional phenotype association studies. Biometrics, 71(3), 812–
820. https://doi.org/10.1111/biom.12314

Hughes, A. J., Daniel, S. E., Kilford, L., & Lees, A. J. (1992). Accu-
racy of clinical diagnosis of idiopathic Parkinson’s disease: A
clinico-pathological study of 100 cases. Journal of Neurology,
Neurosurgery, and Psychiatry, 55(3), 181–184. https://doi.org/
10.1136/jnnp.55.3.181

Kalaitzakis, M. E., & Pearce, R. K. B. (2009). The morbid anatomy
of dementia in Parkinson’s disease. Acta Neuropathologica,
118(5), 587–598. https://doi.org/10.1007/s00401-009-0597-x

Kehagia, A. A., Barker, R. A., & Robbins, T. W. (2010). Neuropsy-
chological and clinical heterogeneity of cognitive impairment
and dementia in patients with Parkinson’s disease. The Lancet.

Neurology, 9(12), 1200–1213. https://doi.org/10.1016/S1474-
4422(10)70212-X

Kish, S. J., Shannak, K., & Hornykiewicz, O. (1988). Uneven pattern
of dopamine loss in the striatum of patients with idiopathic
Parkinson’s disease. New England Journal of Medicine,
318(14), 876–880. https://doi.org/10.1056/
NEJM198804073181402

Kramer, J. H., Mungas, D., Reed, B. R., Wetzel, M. E.,
Burnett, M. M., Miller, B. L., Weiner, M. W., & Chui, H. C.
(2007). Longitudinal MRI and cognitive change in healthy
elderly. Neuropsychology, 21(4), 412–418. https://doi.org/10.
1037/0894-4105.21.4.412

Lee, J. E., Cho, K. H., Song, S. K., Kim, H. J., Lee, H. S.,
Sohn, Y. H., & Lee, P. H. (2014). Exploratory analysis of neuro-
psychological and neuroanatomical correlates of progressive
mild cognitive impairment in Parkinson’s disease. Journal of
Neurology, Neurosurgery, and Psychiatry, 85(1), 7–16. https://
doi.org/10.1136/jnnp-2013-305062

Lei, Y., Su, J., Guo, Q., Yang, H., Gu, Y., & Mao, Y. (2016). Regional
gray matter atrophy in vascular mild cognitive impairment.
Journal of Stroke and Cerebrovascular Diseases, 25(1), 95–101.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2015.08.041

Li, Y.-O., Adalı, T., & Calhoun, V. D. (2007). Estimating the number
of independent components for functional magnetic resonance
imaging data. Human Brain Mapping, 28(11), 1251–1266.
https://doi.org/10.1002/hbm.20359

Litvan, I., Goldman, J. G., Tröster, A. I., Schmand, B. A.,
Weintraub, D., Petersen, R. C., Mollenhauer, B., Adler, C. H.,
Marder, K., Williams-Gray, C. H., Aarsland, D., Kulisevsky, J.,
Rodriguez-Oroz, M. C., Burn, D. J., Barker, R. A., & Emre, M.
(2012). Diagnostic criteria for mild cognitive impairment in
Parkinson’s disease: Movement Disorder Society Task Force
guidelines. Movement Disorders, 27(3), 349–356. https://doi.
org/10.1002/mds.24893

Mitolo, M., Gardini, S., Fasano, F., Crisi, G., Pelosi, A.,
Pazzaglia, F., & Caffarra, P. (2013). Visuospatial memory and
neuroimaging correlates in mild cognitive impairment. Jour-
nal of Alzheimer’s Disease, 35(1), 75–90. https://doi.org/10.
3233/JAD-121288

Nagano-Saito, A., Washimi, Y., Arahata, Y., Kachi, T., Lerch, J. P.,
Evans, A. C., Dagher, A., & Ito, K. (2005). Cerebral atrophy
and its relation to cognitive impairment in Parkinson disease.
Neurology, 64(2), 224–229. https://doi.org/10.1212/01.WNL.
0000149510.41793.50

Nakagawa, S., & Freckleton, R. P. (2008). Missing inaction: The
dangers of ignoring missing data. Trends in Ecology & Evolu-
tion, 23(11), 592–596. https://doi.org/10.1016/j.tree.2008.06.014

Newman, M. (2010). Networks: An introduction. Oxford University
Press. https://doi.org/10.1093/acprof:oso/9780199206650.001.
0001

Nichols, T. E., & Holmes, A. P. (2002). Nonparametric permutation
tests for functional neuroimaging: A primer with examples.
Human Brain Mapping, 15(1), 1–25. https://doi.org/10.1002/
hbm.1058

Parkes, L., Fulcher, B., Yucel, M., & Fornito, A. (2018). An evalua-
tion of the efficacy, reliability, and sensitivity of motion correc-
tion strategies for resting-state functional MRI. NeuroImage,
171, 415–436. https://doi.org/10.1016/j.neuroimage.2017.
12.073

WYLIE ET AL. 525

 14609568, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ejn.15899 by U

niversity O
f C

olorado D
enver, W

iley O
nline L

ibrary on [18/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1002/(sici)1097-0193(1999)8:4%3C272::aid-hbm10%3E3.0.co;2-4
https://doi.org/10.1002/(sici)1097-0193(1999)8:4%3C272::aid-hbm10%3E3.0.co;2-4
https://doi.org/10.1515/revneuro.2010.21.3.187
https://doi.org/10.1515/revneuro.2010.21.3.187
https://doi.org/10.1186/s40035-016-0066-0
https://doi.org/10.1016/j.parkreldis.2017.11.003
https://doi.org/10.1016/j.parkreldis.2017.11.003
https://doi.org/10.1038/nrneurol.2012.242
https://doi.org/10.1002/mds.25655
https://doi.org/10.1002/mds.25655
https://doi.org/10.1016/j.neulet.2021.135672
https://doi.org/10.1016/j.neulet.2021.135672
https://doi.org/10.1002/hbm.10123
https://doi.org/10.1002/hbm.10123
https://doi.org/10.1016/j.jns.2017.01.012
https://doi.org/10.1016/j.nicl.2018.03.013
https://doi.org/10.1111/biom.12314
https://doi.org/10.1136/jnnp.55.3.181
https://doi.org/10.1136/jnnp.55.3.181
https://doi.org/10.1007/s00401-009-0597-x
https://doi.org/10.1016/S1474-4422(10)70212-X
https://doi.org/10.1016/S1474-4422(10)70212-X
https://doi.org/10.1056/NEJM198804073181402
https://doi.org/10.1056/NEJM198804073181402
https://doi.org/10.1037/0894-4105.21.4.412
https://doi.org/10.1037/0894-4105.21.4.412
https://doi.org/10.1136/jnnp-2013-305062
https://doi.org/10.1136/jnnp-2013-305062
https://doi.org/10.1016/j.jstrokecerebrovasdis.2015.08.041
https://doi.org/10.1002/hbm.20359
https://doi.org/10.1002/mds.24893
https://doi.org/10.1002/mds.24893
https://doi.org/10.3233/JAD-121288
https://doi.org/10.3233/JAD-121288
https://doi.org/10.1212/01.WNL.0000149510.41793.50
https://doi.org/10.1212/01.WNL.0000149510.41793.50
https://doi.org/10.1016/j.tree.2008.06.014
https://doi.org/10.1093/acprof:oso/9780199206650.001.0001
https://doi.org/10.1093/acprof:oso/9780199206650.001.0001
https://doi.org/10.1002/hbm.1058
https://doi.org/10.1002/hbm.1058
https://doi.org/10.1016/j.neuroimage.2017.12.073
https://doi.org/10.1016/j.neuroimage.2017.12.073


Passingham, R. E., Stephan, K. E., & Kötter, R. (2002). The anatom-
ical basis of functional localization in the cortex. Nature
Reviews Neuroscience, 3(8), 606–616. https://doi.org/10.1038/
nrn893

Pereira, J. B., Svenningsson, P., Weintraub, D., Bronnick, K.,
Lebedev, A., Westman, E., & Aarsland, D. (2014). Initial cogni-
tive decline is associated with cortical thinning in early Parkin-
son disease. Neurology, 82(22), 2017–2025. https://doi.org/10.
1212/WNL.0000000000000483

Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., &
Petersen, S. E. (2012). Spurious but systematic correlations in
functional connectivity MRI networks arise from subject
motion. NeuroImage, 59(3), 2142–2154. https://doi.org/10.
1016/j.neuroimage.2011.10.018

Raz, N., & Rodrigue, K. M. (2006). Differential aging of the brain:
Patterns, cognitive correlates and modifiers. Neuroscience and
Biobehavioral Reviews, 30(6), 730–748. https://doi.org/10.1016/
j.neubiorev.2006.07.001

Salat, D. H., Kaye, J. A., & Janowsky, J. S. (2002). Greater orbital
prefrontal volume selectively predicts worse working memory
performance in older adults. Cerebral Cortex, 12(5), 494–505.
https://doi.org/10.1093/cercor/12.5.494

Salthouse, T. A. (2011). Neuroanatomical substrates of age-related
cognitive decline. Psychological Bulletin, 137(5), 753–784.
https://doi.org/10.1037/a0023262

Segura, B., Baggio, H. C., Marti, M. J., Valldeoriola, F., Compta, Y.,
Garcia-Diaz, A. I., Vendrell, P., Bargallo, N., Tolosa, E., &
Junque, C. (2014). Cortical thinning associated with mild cog-
nitive impairment in Parkinson’s disease. Movement Disorders,
29(12), 1495–1503. https://doi.org/10.1002/mds.25982

Seibert, T. M., Murphy, E. A., Kaestner, E. J., & Brewer, J. B. (2012).
Interregional correlations in Parkinson disease and Parkinson-
related dementia with resting functional MR imaging. Radiol-
ogy, 263(1), 226–234. https://doi.org/10.1148/radiol.12111280

Sejdinovic, D., Sriperumbudur, B., Gretton, A., & Fukumizu, K.
(2013). Equivalence of distance-based and RKHS-based statis-
tics in hypothesis testing. The Annals of Statistics, 41, 2263–
2291. https://doi.org/10.1214/13-AOS1140

Shirer, W. R., Ryali, S., Rykhlevskaia, E., Menon, V., &
Greicius, M. D. (2012). Decoding subject-driven cognitive
states with whole-brain connectivity patterns. Cerebral Cortex,
22(1), 158–165. https://doi.org/10.1093/cercor/bhr099

Simon, N., & Tibshirani, R. (2014). Comment on “detecting novel
associations in large data sets” by reshef et al, science dec
16, 2011. arXiv preprint arXiv:1401.7645.

Stefanis, L. (2012). α-Synuclein in Parkinson’s disease. Cold Spring
Harbor Perspectives in Medicine, 2(2), a009399. https://doi.org/
10.1101/cshperspect.a009399

Székely, G. J., Rizzo, M. L., & Bakirov, N. K. (2007). Measuring and
testing dependence by correlation of distances. Annals of Sta-
tistics, 35(6), 2769–2794. https://doi.org/10.1214/
009053607000000505

Van Petten, C., Plante, E., Davidson, P. S., Kuo, T. Y.,
Bajuscak, L., & Glisky, E. L. (2004). Memory and executive
function in older adults: Relationships with temporal and pre-
frontal gray matter volumes and white matter hyperintensities.
Neuropsychologia, 42(10), 1313–1335. https://doi.org/10.1016/j.
neuropsychologia.2004.02.009

Vogt, B. A. (2019). Cingulate cortex in Parkinson’s disease. In
Handbook of clinical neurology (Vol. 166) (pp. 253–266).
Elsevier.

Yeo, B. T. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R.,
Lashkari, D., Hollinshead, M., Roffman, J. L., Smoller, J. W.,
Zöllei, L., Polimeni, J. R., Fischl, B., Liu, H., & Buckner, R. L.
(2011). The organization of the human cerebral cortex esti-
mated by intrinsic functional connectivity. Journal of Neuro-
physiology, 106(3), 1125–1165. https://doi.org/10.1152/jn.
00338.2011

Zigmond, A. S., & Snaith, R. P. (1983). The hospital anxiety and
depression scale. Acta Psychiatrica Scandinavica, 67(6), 361–
370. https://doi.org/10.1111/j.1600-0447.1983.tb09716.x

SUPPORTING INFORMATION
Additional supporting information can be found online
in the Supporting Information section at the end of this
article.

How to cite this article: Wylie, K. P., Kluger,
B. M., Medina, L. D., Holden, S. K., Kronberg, E.,
Tregellas, J. R., & Buard, I. (2023). Hippocampal,
basal ganglia and olfactory connectivity contribute
to cognitive impairments in Parkinson’s disease.
European Journal of Neuroscience, 57(3), 511–526.
https://doi.org/10.1111/ejn.15899

526 WYLIE ET AL.

 14609568, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ejn.15899 by U

niversity O
f C

olorado D
enver, W

iley O
nline L

ibrary on [18/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1038/nrn893
https://doi.org/10.1038/nrn893
https://doi.org/10.1212/WNL.0000000000000483
https://doi.org/10.1212/WNL.0000000000000483
https://doi.org/10.1016/j.neuroimage.2011.10.018
https://doi.org/10.1016/j.neuroimage.2011.10.018
https://doi.org/10.1016/j.neubiorev.2006.07.001
https://doi.org/10.1016/j.neubiorev.2006.07.001
https://doi.org/10.1093/cercor/12.5.494
https://doi.org/10.1037/a0023262
https://doi.org/10.1002/mds.25982
https://doi.org/10.1148/radiol.12111280
https://doi.org/10.1214/13-AOS1140
https://doi.org/10.1093/cercor/bhr099
https://doi.org/10.1101/cshperspect.a009399
https://doi.org/10.1101/cshperspect.a009399
https://doi.org/10.1214/009053607000000505
https://doi.org/10.1214/009053607000000505
https://doi.org/10.1016/j.neuropsychologia.2004.02.009
https://doi.org/10.1016/j.neuropsychologia.2004.02.009
https://doi.org/10.1152/jn.00338.2011
https://doi.org/10.1152/jn.00338.2011
https://doi.org/10.1111/j.1600-0447.1983.tb09716.x
https://doi.org/10.1111/ejn.15899

	Hippocampal, basal ganglia and olfactory connectivity contribute to cognitive impairments in Parkinson's disease
	1  INTRODUCTION
	2  MATERIALS AND METHODS
	2.1  Study population
	2.2  Cognitive evaluation
	2.3  MRI acquisition
	2.4  Structural preprocessing and VBM analysis
	2.5  Functional connectivity analysis
	2.5.1  Functional preprocessing
	2.5.2  Independent component analysis (ICA)
	2.5.3  Subject-level whole-brain network construction
	2.5.4  Cognitive associations with voxels
	2.5.5  Networks contributing to cognitive associations


	3  RESULTS
	3.1  Demographic, clinical and cognitive characteristics of participants
	3.2  ICA and network identification
	3.3  Associations with cognitive domains
	3.4  Attention
	3.5  Executive function
	3.6  Language
	3.7  Learning and memory
	3.8  Visuospatial
	3.9  Global cognition

	4  DISCUSSION
	5  CONCLUSION
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST
	AUTHOR CONTRIBUTIONS
	PEER REVIEW
	DATA AVAILABILITY STATEMENT

	REFERENCES


